Copied to
clipboard

G = C42.327D4order 128 = 27

23rd non-split extension by C42 of D4 acting via D4/C4=C2

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.327D4, (C2×Q8)⋊6C8, (C2×C8)⋊10Q8, C2.5(C8×Q8), C4.52(C4⋊Q8), C2.5(C84Q8), C22.27(C4×Q8), C4.13(C22⋊C8), (C2×C4).48M4(2), (C22×Q8).24C4, C4.92(C4.4D4), C22.35(C8○D4), C4.120(C22⋊Q8), (C22×C8).59C22, C22.45(C22×C8), (C2×C42).330C22, C23.274(C22×C4), C22.56(C2×M4(2)), (C22×C4).1639C23, C22.7C42.9C2, C2.3(C23.67C23), (C2×C4×C8).24C2, (C2×C4⋊C8).31C2, (C2×C4⋊C4).62C4, (C2×C4×Q8).16C2, (C2×C4).23(C2×C8), C2.21(C2×C22⋊C8), (C2×C4).347(C2×Q8), (C2×C4).1546(C2×D4), (C2×C4).945(C4○D4), (C22×C4).129(C2×C4), (C2×C4).261(C22⋊C4), C2.5((C22×C8)⋊C2), C22.128(C2×C22⋊C4), SmallGroup(128,716)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C42.327D4
C1C2C4C2×C4C22×C4C2×C42C2×C4×C8 — C42.327D4
C1C22 — C42.327D4
C1C22×C4 — C42.327D4
C1C2C2C22×C4 — C42.327D4

Generators and relations for C42.327D4
 G = < a,b,c,d | a4=b4=1, c4=b2, d2=a2b2, ab=ba, ac=ca, dad-1=a-1, bc=cb, bd=db, dcd-1=a2b-1c3 >

Subgroups: 220 in 146 conjugacy classes, 80 normal (22 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C42, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2×Q8, C2×Q8, C4×C8, C4⋊C8, C2×C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C4×Q8, C22×C8, C22×Q8, C22.7C42, C2×C4×C8, C2×C4⋊C8, C2×C4×Q8, C42.327D4
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, Q8, C23, C22⋊C4, C2×C8, M4(2), C22×C4, C2×D4, C2×Q8, C4○D4, C22⋊C8, C2×C22⋊C4, C4×Q8, C22⋊Q8, C4.4D4, C4⋊Q8, C22×C8, C2×M4(2), C8○D4, C23.67C23, C2×C22⋊C8, (C22×C8)⋊C2, C8×Q8, C84Q8, C42.327D4

Smallest permutation representation of C42.327D4
Regular action on 128 points
Generators in S128
(1 80 27 71)(2 73 28 72)(3 74 29 65)(4 75 30 66)(5 76 31 67)(6 77 32 68)(7 78 25 69)(8 79 26 70)(9 86 109 122)(10 87 110 123)(11 88 111 124)(12 81 112 125)(13 82 105 126)(14 83 106 127)(15 84 107 128)(16 85 108 121)(17 104 63 54)(18 97 64 55)(19 98 57 56)(20 99 58 49)(21 100 59 50)(22 101 60 51)(23 102 61 52)(24 103 62 53)(33 48 117 94)(34 41 118 95)(35 42 119 96)(36 43 120 89)(37 44 113 90)(38 45 114 91)(39 46 115 92)(40 47 116 93)
(1 19 5 23)(2 20 6 24)(3 21 7 17)(4 22 8 18)(9 90 13 94)(10 91 14 95)(11 92 15 96)(12 93 16 89)(25 63 29 59)(26 64 30 60)(27 57 31 61)(28 58 32 62)(33 86 37 82)(34 87 38 83)(35 88 39 84)(36 81 40 85)(41 110 45 106)(42 111 46 107)(43 112 47 108)(44 105 48 109)(49 68 53 72)(50 69 54 65)(51 70 55 66)(52 71 56 67)(73 99 77 103)(74 100 78 104)(75 101 79 97)(76 102 80 98)(113 126 117 122)(114 127 118 123)(115 128 119 124)(116 121 120 125)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 86 31 126)(2 120 32 40)(3 88 25 128)(4 114 26 34)(5 82 27 122)(6 116 28 36)(7 84 29 124)(8 118 30 38)(9 67 105 80)(10 101 106 55)(11 69 107 74)(12 103 108 49)(13 71 109 76)(14 97 110 51)(15 65 111 78)(16 99 112 53)(17 35 59 115)(18 123 60 83)(19 37 61 117)(20 125 62 85)(21 39 63 119)(22 127 64 87)(23 33 57 113)(24 121 58 81)(41 66 91 79)(42 100 92 54)(43 68 93 73)(44 102 94 56)(45 70 95 75)(46 104 96 50)(47 72 89 77)(48 98 90 52)

G:=sub<Sym(128)| (1,80,27,71)(2,73,28,72)(3,74,29,65)(4,75,30,66)(5,76,31,67)(6,77,32,68)(7,78,25,69)(8,79,26,70)(9,86,109,122)(10,87,110,123)(11,88,111,124)(12,81,112,125)(13,82,105,126)(14,83,106,127)(15,84,107,128)(16,85,108,121)(17,104,63,54)(18,97,64,55)(19,98,57,56)(20,99,58,49)(21,100,59,50)(22,101,60,51)(23,102,61,52)(24,103,62,53)(33,48,117,94)(34,41,118,95)(35,42,119,96)(36,43,120,89)(37,44,113,90)(38,45,114,91)(39,46,115,92)(40,47,116,93), (1,19,5,23)(2,20,6,24)(3,21,7,17)(4,22,8,18)(9,90,13,94)(10,91,14,95)(11,92,15,96)(12,93,16,89)(25,63,29,59)(26,64,30,60)(27,57,31,61)(28,58,32,62)(33,86,37,82)(34,87,38,83)(35,88,39,84)(36,81,40,85)(41,110,45,106)(42,111,46,107)(43,112,47,108)(44,105,48,109)(49,68,53,72)(50,69,54,65)(51,70,55,66)(52,71,56,67)(73,99,77,103)(74,100,78,104)(75,101,79,97)(76,102,80,98)(113,126,117,122)(114,127,118,123)(115,128,119,124)(116,121,120,125), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,86,31,126)(2,120,32,40)(3,88,25,128)(4,114,26,34)(5,82,27,122)(6,116,28,36)(7,84,29,124)(8,118,30,38)(9,67,105,80)(10,101,106,55)(11,69,107,74)(12,103,108,49)(13,71,109,76)(14,97,110,51)(15,65,111,78)(16,99,112,53)(17,35,59,115)(18,123,60,83)(19,37,61,117)(20,125,62,85)(21,39,63,119)(22,127,64,87)(23,33,57,113)(24,121,58,81)(41,66,91,79)(42,100,92,54)(43,68,93,73)(44,102,94,56)(45,70,95,75)(46,104,96,50)(47,72,89,77)(48,98,90,52)>;

G:=Group( (1,80,27,71)(2,73,28,72)(3,74,29,65)(4,75,30,66)(5,76,31,67)(6,77,32,68)(7,78,25,69)(8,79,26,70)(9,86,109,122)(10,87,110,123)(11,88,111,124)(12,81,112,125)(13,82,105,126)(14,83,106,127)(15,84,107,128)(16,85,108,121)(17,104,63,54)(18,97,64,55)(19,98,57,56)(20,99,58,49)(21,100,59,50)(22,101,60,51)(23,102,61,52)(24,103,62,53)(33,48,117,94)(34,41,118,95)(35,42,119,96)(36,43,120,89)(37,44,113,90)(38,45,114,91)(39,46,115,92)(40,47,116,93), (1,19,5,23)(2,20,6,24)(3,21,7,17)(4,22,8,18)(9,90,13,94)(10,91,14,95)(11,92,15,96)(12,93,16,89)(25,63,29,59)(26,64,30,60)(27,57,31,61)(28,58,32,62)(33,86,37,82)(34,87,38,83)(35,88,39,84)(36,81,40,85)(41,110,45,106)(42,111,46,107)(43,112,47,108)(44,105,48,109)(49,68,53,72)(50,69,54,65)(51,70,55,66)(52,71,56,67)(73,99,77,103)(74,100,78,104)(75,101,79,97)(76,102,80,98)(113,126,117,122)(114,127,118,123)(115,128,119,124)(116,121,120,125), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,86,31,126)(2,120,32,40)(3,88,25,128)(4,114,26,34)(5,82,27,122)(6,116,28,36)(7,84,29,124)(8,118,30,38)(9,67,105,80)(10,101,106,55)(11,69,107,74)(12,103,108,49)(13,71,109,76)(14,97,110,51)(15,65,111,78)(16,99,112,53)(17,35,59,115)(18,123,60,83)(19,37,61,117)(20,125,62,85)(21,39,63,119)(22,127,64,87)(23,33,57,113)(24,121,58,81)(41,66,91,79)(42,100,92,54)(43,68,93,73)(44,102,94,56)(45,70,95,75)(46,104,96,50)(47,72,89,77)(48,98,90,52) );

G=PermutationGroup([[(1,80,27,71),(2,73,28,72),(3,74,29,65),(4,75,30,66),(5,76,31,67),(6,77,32,68),(7,78,25,69),(8,79,26,70),(9,86,109,122),(10,87,110,123),(11,88,111,124),(12,81,112,125),(13,82,105,126),(14,83,106,127),(15,84,107,128),(16,85,108,121),(17,104,63,54),(18,97,64,55),(19,98,57,56),(20,99,58,49),(21,100,59,50),(22,101,60,51),(23,102,61,52),(24,103,62,53),(33,48,117,94),(34,41,118,95),(35,42,119,96),(36,43,120,89),(37,44,113,90),(38,45,114,91),(39,46,115,92),(40,47,116,93)], [(1,19,5,23),(2,20,6,24),(3,21,7,17),(4,22,8,18),(9,90,13,94),(10,91,14,95),(11,92,15,96),(12,93,16,89),(25,63,29,59),(26,64,30,60),(27,57,31,61),(28,58,32,62),(33,86,37,82),(34,87,38,83),(35,88,39,84),(36,81,40,85),(41,110,45,106),(42,111,46,107),(43,112,47,108),(44,105,48,109),(49,68,53,72),(50,69,54,65),(51,70,55,66),(52,71,56,67),(73,99,77,103),(74,100,78,104),(75,101,79,97),(76,102,80,98),(113,126,117,122),(114,127,118,123),(115,128,119,124),(116,121,120,125)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,86,31,126),(2,120,32,40),(3,88,25,128),(4,114,26,34),(5,82,27,122),(6,116,28,36),(7,84,29,124),(8,118,30,38),(9,67,105,80),(10,101,106,55),(11,69,107,74),(12,103,108,49),(13,71,109,76),(14,97,110,51),(15,65,111,78),(16,99,112,53),(17,35,59,115),(18,123,60,83),(19,37,61,117),(20,125,62,85),(21,39,63,119),(22,127,64,87),(23,33,57,113),(24,121,58,81),(41,66,91,79),(42,100,92,54),(43,68,93,73),(44,102,94,56),(45,70,95,75),(46,104,96,50),(47,72,89,77),(48,98,90,52)]])

56 conjugacy classes

class 1 2A···2G4A···4H4I···4P4Q···4X8A···8P8Q···8X
order12···24···44···44···48···88···8
size11···11···12···24···42···24···4

56 irreducible representations

dim1111111122222
type++++++-
imageC1C2C2C2C2C4C4C8D4Q8M4(2)C4○D4C8○D4
kernelC42.327D4C22.7C42C2×C4×C8C2×C4⋊C8C2×C4×Q8C2×C4⋊C4C22×Q8C2×Q8C42C2×C8C2×C4C2×C4C22
# reps14111621644448

Matrix representation of C42.327D4 in GL5(𝔽17)

160000
00100
016000
00001
000160
,
130000
013000
001300
00040
00004
,
90000
015000
001500
00009
00080
,
40000
031400
0141400
00010
000016

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,1,0],[13,0,0,0,0,0,13,0,0,0,0,0,13,0,0,0,0,0,4,0,0,0,0,0,4],[9,0,0,0,0,0,15,0,0,0,0,0,15,0,0,0,0,0,0,8,0,0,0,9,0],[4,0,0,0,0,0,3,14,0,0,0,14,14,0,0,0,0,0,1,0,0,0,0,0,16] >;

C42.327D4 in GAP, Magma, Sage, TeX

C_4^2._{327}D_4
% in TeX

G:=Group("C4^2.327D4");
// GroupNames label

G:=SmallGroup(128,716);
// by ID

G=gap.SmallGroup(128,716);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,400,422,100,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=b^2,d^2=a^2*b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,b*c=c*b,b*d=d*b,d*c*d^-1=a^2*b^-1*c^3>;
// generators/relations

׿
×
𝔽